How Does a Low Carbon Future for Canada compare with Europe, the USA and Australia?

What low carbon futures might look like… (Ralph Torrie, Aug. 27, 2016)
Also discussed here: Low Carbon Energy Futures: A Review of National Scenarios (55 page pdf, Ralph D. Torrie, Tyler Bryant, Dale Marshall, Mitchell Beer, Blake Anderson, Ryan Kadowaki, and Johanne Whitmore, Technical Report, Trottier Energy Futures Project, Jan. 2013)

Today we review a report that compares low carbon future scenarios from 8 countries: 3 carbon resource rich (USA, Canada, Australia) and 5 European countries (Sweden Germany, France, Finland, UK). The common goal of the scenario was to lower carbon emissions by 80% from 1990 levels. Each country has its own approaches to the challenge from differing start points and so the scenarios differ as well although some similarities were noted including: decarbnization of the electricity supply, increased efficiency of fuels, a large supply of biofuels and electricity‘s share of the total energy  consumption grows over time.  Sweden has by far the lowest energy intensity because almost all of its electricity comes from nuclear, hydro and biomass- so that future reductions in carbon emissions comes from increased energy efficiency. Canada like Sweden  also generates energy from non-carbon sources but has larger inputs ofnon-renewable energy sources (natural gas, coal, oil) in its energy pie and so has further to go to reach 80% less carbon emissions. Over 50% reductions in carbon emissions in Canada and the USA is in transportation where the growth of electric vehicles is key.


To see Key Quotes and Links to key reports about this post, click HERE

What is Needed to Limit Global Climate Warming to 1.5C Using a Scenario Approach?

A Better Life with a Healthy Planet – Pathways to Net-Zero Emissions, A New Lens Scenarios Supplement (96 page pdf, Shell, May 2016)

Today we review a supplement to the Shell scenarios published in 2013 that examined steps toward a net zero energy future. The Shell scenario team became famous for their contributions to determining post-apartheid options for South Africa after 1990. It is a scoping document, starting with an estimate of the energy needs of the world in 2100 “for a better life”, based on a 50% population increase and a lowering of energy demand per person from as much as 300 gigajoules in USA/Canada to 100 GJ per person, as a world average – which amounts to a doubling of the global energy needs.

To accomplish this by 2050 and meet the Paris goal of limiting warming to 1.5 C, would require net zero emissions by that year and that, in turn, would require some form of negative carbon reduction, using technologies such as Carbon Capture and Storage (CCS) which would mean lowering its current high cost to around $30 per tonne by 2030- equivalent to wind power costs. Carbon pricing is seen as an absolute necessity to bring solar energy up to 40% of energy needs by 2060. It also requires 80% of passenger cars converted to electricity by 2030 and, in terms of land use, reducing drastically the amount of agricultural land used for feeding animals from the current 80%. For developing countries, investment in infrastructure and adapting to a solar society would allow them to leap-frog to net zero emissions as well.


To see Key Quotes and Links to key reports about this post, click HERE

How Polluted is Rome’s Air?

Assessment of the Air Pollution Level in the City of Rome (Italy) (15 page pdf, Gabriele Battista, Tiziano Pagliaroli, Luca Mauri, Carmine Basilicata and Roberto De Lieto Vollaro, Sustainability, Aug. 23, 2016)

Today we review an assessment of urban pollution in Italy’s largest city, Rome, whose population in the metropolitan area reaches 4.3 million. Emissions from private vehicles, used by 60% of the population, are the main source of pollution, particularly in winter,  with peaks twice daily at rush hour, like many other large cities in the developed world. PM2.5 is one of a small number of pollutants with major health impacts as well as damage to monuments and historical buildings n the urban area which are many in this city with a long history. Reduction or elimination of the post polluting vehicles (Euro class 0,1  and 2) is seen as the most effective way to reduce pollution levels.


To see Key Quotes and Links to key reports about this post, click HERE

What is the Future for the Summer Olympics with Global Warming?

The last Summer Olympics? Climate change, health, and work outdoors (Kirk. R. Smith, The Lancet, Aug. 13, 2016)

Also discussed here: When Will It Get Too Hot to Hold the Summer Olympics? (Linda Poon, MSN, Aug. 15, 2016)

And here: By 2085, most cities could be too hot for the Summer Olympics (Chris Mooney, Washington Post, Aug. 16, 2016)

And here: Are the Winter Olympics at Risk because of Global Climate Warming? (Pollution Free Cities, Mar.5, 2014)

Today we review a new report about the feasibility of holding the summer Olympic games when the temperatures and humidity get to levels unsafe for vigorous activities. Just as lack of cold and snow will make the choice of sites for Winter Olympics difficult, so it is with high levels of heat and moisture in the air with the Summer Olympics  The authors predict that with the course climate warming is on now that, in 50-60 years (2085), there will only be 8 cities out of  543 cities outside western Europe that would be “low risk” or acceptable. This same threat applies more generally to anyone attempting to work or exercise physically outdoors during the summer heat.


To see Key Quotes and Links to key reports about this post, click HERE


How well did London’s Congestion Charge Perform?

London Congestion Pricing – Implications for Other Cities (5 page pdf, Todd Litman, CESifo DICE Report 3/2005, Mar. 2005)

Today we review a paper that assessed the performance of the London Congestion Charge after it had operated for 2 years. The winners include bus and taxi users, pedestrians and cyclists  and motorists with high value trips and most city centre businesses with congestion delays reduced reduced by 50% and net annual revenue of 97 million UK pounds to support transit/pedestrian and cycling infrastructure. Losers include motorists with marginal value trips and riders and motorists in border areas who a 10% increase in  spillover traffic (but no more delay because of proactive action to adjust traffic signals).  The London congestion charging system was a first for Europe and probably stimulated similar initiatives in Stockholm, Sweden Trondheim, Norway and Singapore in Asia.


To see Key Quotes and Links to key reports about this post, click HERE

How Does Geoengineering fit with the Paris Agreement on Climate Change?

Implications of the Paris Agreement for Carbon Dioxide Removal and Solar Geoengineering (10 page pdf, Joshua B. Horton, David W. Keith, and Matthias Honegger, Harvard Project on Climate Agreements, Jul. 2016)

The Paris Agreement did not explicitly mention geoengineering as a solution, in addition to efforts to reduce carbon emissions, to the challenges involved in reaching the ultimate goal of end to global warming and a stable radiation equilibrium,. Geoengineering may be broken down into two approaches: carbon dioxide removal (CDR)  (as shown, for example, by carbon capture and sequestration) and solar radiation management (SRM) (as shown, for example, by the introduction of aerosols into the atmosphere to reflect incoming solar radiation). The authors of the paper reviewed here flag several indirect references to CDR in the Paris agreement as well as suggesting the inevitability of SRM, if there is any chance of meeting the very challenging objective of limiting warming to 1.5 C or less. They noted that CDR comes with a high short term cost while SRM does not but could limit warming to 1.5 C- although SRM comes with much more uncertainty when it comes to side effects and governance issues.

Schematic showing both terrestrial and geologi...

Schematic showing both terrestrial and geological sequestration of carbon dioxide emissions from a coal-fired plant. Rendering by LeJean Hardin and Jamie Payne. Source: (Photo credit: Wikipedia)

To see Key Quotes and Links to key reports about this post, click HERE

How Feasible are Electric-Powered Cars for Widespread Use?

Potential for widespread electrification of personal vehicle travel in the United States (Abstract, Zachary A. Needell, James McNerney, Michael T. Chang & Jessika E. Trancik, Nature Energy, Aug. 15, 2016)
Also discussed here: Today’s electric vehicles can make a dent in climate change: Electric vehicles can meet drivers’ needs enough to replace 90 percent of vehicles now on the road (Science Daily, Aug. 15, 2016)
And here: Low-carbon infrastructure strategies for cities (Abstract, C. A. Kennedy, N. Ibrahim & D. Hoornweg, Nature climate change, Mar.16,2014)

Today we review research into the feasibility of widespread use of e-cars for urban transportation. Results indicate that 87% of current needs can easily be met by today’s electric vehicle technology, noting the obstacles that are holding back their full acceptance can or will be overcome. The need to charge batteries can be done overnight or during the day in parking facilities. The relative short driving range can be overcome for driving long distances by utilizing alternatives such as car-sharing with conventional vehicles or by purchasing a second car for those needs. Converting 90% of today’s vehicles to electric power would reduce greenhouse gas emissions for the USA by 30% – or more if power came from utilities with lower carbon fuel use.

To see Key Quotes and Links to key reports about this post, click HERE

%d bloggers like this: